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Current implementations of Roberts’ rules for programming for supercomputers are 
reviewed. The coming Class VII computers will require more powerful software tools to realize 
their full potential, with more use of knowledge systems. symbolic manipulation. automated 
programming. parallel processing, parallelized graphics, and an integration of high-perfor- 
mance work stations into the supercomputing environment. The need for these approaches is 
illustrated with simple examples. ( 19X7 Academic Press, Inc 

1. TNTR~~XJCTI~K 

Among Keith Roberts’ many interests were standards for writing software. 
Roberts’ rules [ 11 for software style are still very useful and bring clarity and ease 
to Fortran programming. They were motivated by the need to communicate clearly 
with other scientists and later workers on a project, and by the continuing need for 
portability of programs. The environment for large-scale computing has change.d 
dramatically with the advent of supercomputers 1000 times faster than the 
Class II-III computers available then and with workstations costing $10-30 EC for 
personal computers of the same power and with high-resolution color graphics. 
Keith Roberts’ standards had the effect of clarifying the steps needed to do suc- 
cessful computing and the goal of this article is to identify some of the new tools 
and methods which will make the full power of the modern environment accessible 
to the ordinary user. 

The emerging Class VII supercomputer with 300 million words of memory and 
peak computation rates of 10,000 megaflops is capable of doing problems which 
scientists can describe but for which the algebraic effort in developing the equations 
is enormous and for which the coding will take many man-years. Though many 
codes can be expanded to take advantage of the Class VII capability, the machines 
have outstripped our ability to program them for the most advanced problems. 
There is a clear need for a new, Fifth, generation of software tools which are 
simpler to use even than Fortran in describing scientific problems. 

Roberts’ rules have been well received by a small number of people in the 
Magnetic Fusion community but many people still program with almost no com- 
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ments, inscrutably formatted input, and very cryptic output. Clearly this works if 
only the final conclusions are to be communicated to one’s colleagues, but it will 
not work for large-scale code development efforts. It is common in commercial, 
systems, and engineering control applications to program to rigid rules described as 
“software engineering” but these approaches are rarely used in scientific 
applications. There is a median in program documentation and some of the most 
valuable elements of Roberts’ rules will be given later. A basic program shell written 
in this style will be discussed and should be a useful teaching aid as well as a good 
starting point for many codes. 

The environment we have to work in is partly due to what we demand and partly 
due to advances in computer science, with the fascinating array of alternatives now 
offered. The real progress in creating user friendly software has come from the 
personal computer manufacturers like Apple, Commodore, and IBM. Efforts are 
currently in progress at many computer centers to bring this level of commonsense 
capability to the supercomputer environment. The Class VI supercomputers, led by 
the Cray 1 series, have executed a tremendous number of scientific problems with 
the barest minimum of software. With some persuasion, a whole new generation of 
increasingly intelligent tools can be produced for the Class VII computers and the 
environment around them. 

The architectures of scalar, vector, and graphics computers with the additional 
complication of parallel processing offer different methods for running problems 
and interacting with the results. It is a daunting prospect to try to become expert in 
all the possibilities before solving a scientific problem. However, it is usually found 
that, providing a problem has been coded with some reasonable understanding of 
the objectives of vector and parallel processing, the amount of code which finally 
has to be tuned to the architecture is about 1 oio of the total! This is not surprising 
since the architectures and compilers were already designed with scientific 
calculations in mind. The obvious implication is that only a few users in each com- 
munity need be highly skilled at tuning codes and the rest of us should concentrate 
on clarity and communication in writing our programs. I will therefore not attempt 
to discuss code optimization further. 

Having argued the needs, we begin with a review of Roberts’ rules and some 
current implementations of a basic program shell. This shell is useful for both a user 
and as a target environment for automatically generated code. The starting point 
for computer-generated code for many scientific applications could usefully be an 
expert system. We make the case for this with some obvious examples. The exam- 
ples are then used as a basis to develop the expectations of a symbolic manipulation 
system and of packages to do code generation. 

Essential to almost every scientific calculation is the ability to display the results 
graphically and, from a supercomputer calculation, this really means hundreds of 
plots per run. This implies that a plot should be as easy to code as a WRITE 
statement and we describe implementations of high-level packages which do this. 
An advantage of such high-level packages is that they lead to natural extensions to 
parallel processing where a calculation may proceed on several processors while 
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graphical output is being generated in real time in parallel on another. The final 
discussion is of the workstations, which complete the supercomputing environment. 
These are indeed self-contained computer centers and it is essential for different 
groups to develop tool kits which make their problem sets easy to handle without 
learning everything about the device. Although these workstations are often used as 
a stand alone resource, they are increasingly a vital part of the supercomputing 
scene. 

2. CURRENT IMPLEMENTATIONS OF ROBERTS' RULES 

The original Olympus system [l] is available from Computer Physics Com- 
munications. Many of the features were appropriate to Fortran IV and have in 
effect been included in Fortran 77 and modern Fortran systems. The system is used 
by a number of people at Livermore and at the Princeton Plasma Physics Lab as a 
way of structuring a code. I have used a simpler version of the system, modified to 
utilize the interactive features of the Livermore systems [Z], and have transported 
the ideas to the Cyber 20.5 and Sun workstations at JVNC. The listing reproduced 
in Listing 1 is the key part of the Fortran Applications Driver [3] or FAD, which 
embodies many of Roberts’ rules in a highly practical form. 

This simple code shell provides the followin, D features and others which are 
described fully elsewhere. [ 3 1. 

(ij I‘he MASTER routine runs many steps of many cases of a problem. 
The user describes the specifics of the problem through (a) the COMMON and 
DATA statements which layout the variables and a test case, (b) the user routine 
VALUES to complete the problem initialization, and (c) the routines to be written 
by the user to run a step, STEPON, (.d) control principal printed and plotted 
results, OUTPUT, and (e) check for end or convergence conditions, TESEND. 

(ii) Data input is by NAMELIST, which, although not a “standard” in 
Fortran, still comes with every major Fortran system. The input file or data stream 
is instantly intelligible and, with the character variable, “COMMENT” can be fully 
described by the user. 

(iii) The first part of the input should be a description of the purpose of the 
run-often hard to discern weeks later from the output! This is handled by the 
FAD library routine, LABELR, which read up to 10 lines of text and prints it on 
the output and graphics channels. 

(iv) Initialization of input and output files, graphics, multiprocessing. 
timing, and terminal interaction is all automatic through the library routines 
PICKIO and PSETUP. It is up to the local implementers of the system to write 
these routines--certainly it is not the responsibility of the user! 

(v) The library routine TTYMES links the code to the terminal to look foi 
interrupts and to make appropriate responses. Any key will stop the code at the 
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C THE JOHN VON NEUMANN CENTER 
C FORTRAN APPLICATION DRIVER (FAD) 
C 
*COhfDECK,FADCOM 
c****** DO NOT CHANGE THESE COMMON BLOCKS!!!! 
c****** THEY ARE NEEDED BY ALL FAD’S AT JVNC 

COh4MON /FADMSTR/ ICASE, IEND,IHALT, IQUIT, 
ISTEP, ISW(SO), ITIMEITTY, 

LABEL(lOO),LABLINS,LGRAPH,LIN,LOUT,LTTY 
COMMON /FADPAR/ PI 
CHARACTER*8 DATE,DROPFIL,INFAD,OUTFAD,TYME 

,NUSER 
CHARACTER*80 COMMENT 
COMMON IFADFILESI COMMENT,DATE,DROPFIL,INFAD,OUTFAD,TYME 

,NUSER 
COMMON WORK( 10000) 

*COMDECK,FADYOU 
C PUT YOUR OWN COMMON BLOCKS HERE 
C 

*COMDECK,FADATA 
NAMELIST IMAINI COMMENT,IEND,IHALT, IQUIT.ISW.ITTY,LIN,LOUT 
NAMELIST /TEST/ COMMENT,ICASE, ISTEP 

C INSERT YOUR DATA STATEMENTS HERE 
*DECK,FADUPD 

c****** DUMMY MAIN PROGRAM NEEDED FOR USE WITH PRIVATE LIBRARIES, 
CALL MASTER(O) 

C STOP THE BEAST! 
STOP 666 
END 

C 
SUBROUTINE MASTER(IPICK) 

C 
*CALL,FADCOM 
C 
C OPEN THE BASIC INPUTIOUPUT FILES 

CALL PICK10 
C INITIALIZE THE SCIENCE GRAPHICS PACKAGE 

IF(LGRAPH.NE.0) CALL PSETUP 
C 
C 2. LABEL OUTPUT AND INITIALIZE EACH CASE 
C 

CALL LABELR 
201 ICASE= ICASE+ 1 

ISTEP= 0 
IF(LIN.NE.0) CALL LISTIO( 1) 
IF(ITIME.NE.0) CALL ALLTIM(LOUT,‘2. I/O OPENED. DATA READ’) 
IF(IQUIT.NE.0) GO TO 701 

C 3. SET PROBLEM ARRAYS 
C 
c 

CALL VALUES 
IF(ITIhfE.NE.0) CALL ALLTIhf(LOUT,‘3. PROBLEM ARRAYS SET’) 

C 
C 4. PRINT DESCRIPTION OF THIS PROBLEM 
C 
C 
400 IF(LGRAPH.NE.0) CALL LISTIO(LGRAPH) 

I= 1 
CALL OUTPUT(I) 
IF(ITIME.NE.0) 

CALL ALLTIM(LOUT,‘J. PROBLEM DESCRIPTION COMPLETED’) 

LISTING 1. The Fortran application driver. 
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C 
C 5. MAIN LOOP OF THE COMPUTATION 

C- 
c 
500 ISTEP= ISTEP+ 1 

CALL STEPON 
IF(ITIME.NE.0) CALL ALLTIM(LOLJT,‘5.1 STEPON JUST COMPLETED’) 

C 
C 5.2 OUTPUT FROM EACH STEP 

C- 
C 

iF(ISTEP.LE.1) CALL LISTIO(-2) 
I= 2 
CALL OUTPUT(I) 
IF(ITIME.NE.0) 
CALL ALLTIM(LOUT,‘J.Z STEPON DIAGNOSTICS COhlPLETED’) 

C 
C 5.3 CHECK IF LOOP HAS ENDED 
C 
c 

CALL TESEND 
IF(ITIME.NE.Oj CALL ALLTIM(LOUT;5.3 END CONDITIONS TESTED’) 
IF(ITTY.GE.1) CALL TTYMES 
IF(IEND.EQ.0) GO TO 500 

C 
c 6. FINAL OUTPUT FROM THE PROBLEM 
L 

CALL LISTIO(-1) 
CALL LISTIOf -2) 
I= 3 
CALL OUTPUT(I) 
IF(ITIME.NE.0) CALL ALLTIM(LOUT,‘6. CASE OUTPUT FINISHED’) 
IF(ITTY.CE.2) CALL TTYMES 
IF(IPICK.EQ.2) RETURN 

C 

C 7. CHECK IF MORE PROBLEMS TO BE RUN OR IS IT TIME TO QUIT 

C- 
C 

IF(IQUIT.EQ.0) GO TO 201 
701 I= 4 

CALL OUTPUT(I) 
CALL ALLTIM(LOUT,‘7. END OF THIS RUN’) 
IF(LGRAPH.NE.0) CALL PCLOSE 

C 
C 8. DO CHECKPOINT/RESTART TO RECOVER ERRORS EASlLY. 
C 
C 

IF(IHALT.EQ.0) THEN 
CLOSE(UNIT= LIN) 
CLOSE(UNIT= LOUT) 
RETURN 

ELSE 
CALL HALTGO 
IEND= 0 
IQUIT= 0 

c REOPEN THE BASIC INPUT/ OUPUT FILES 
CALL PICK10 

c REINITIALIZE THE SCIENCE GRAPHICS PACKAGE 
IF(LGRAPH.NE.0) CALL PSETUP 
CALL LABELR 
CALL LIST101 I) 
IF(IPICK.EQ.3) RETURN 
GO TO 400 
END IF 

END 

LISTING I-Continued 
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next time step and it will display the TEST namelist. The MAIN namelist can then 
be reset or the code can be allowed to continue or forced to quit. 

(vi) The whole run is carefully labelled with time, date, user number, and 
any other information which can be usefully gleaned from the system by routine 
ALLTIM. 

(vii) The routine LIST10 is the essential link between the data input and the 
code variables and so is always needed in the user’s source. It is not listed here, but 
also contains a list, in alphabetic order, of the meaning of each of the FAD 
variables. Users are encouraged to do likewise as they develop a new code. 

(viii) The code can be made to stop at HALTGO. This library routine closes 
all the output files and saves the current copy of the droplile. The code can then be 
restarted exactly at this point with new input and output files to continue an 
interesting run or to switch on detailed diagnostics for one final timestep. 

(ix) The trivial-looking main program is there as a starting point for the 
loaders, which usually will not pick a main routine from a binary library. The idea 
is that when you have 100 routines in a code and you only need to work on a 
couple of them, it is easy to turn the whole code, except for this main program and 
the routines still being developed, into a binary library. Your text editing is then 
simpler and listings are much smaller. 

The coding presented here is deceptively simple since many difficult pieces of 
system-related coding have been buried in the library routines. However, I have 
found it easy to duplicate the effects on a number of systems and, having done it 
once, these very useful features are forever available. This code shell is a useful 
teaching tool for new programmers or even for new users on a system. It also 
allows colleagues to help each other more readily with coding problems as the top- 
most structure is common. Portability is made easier since the system is easily 
reproduced by local experts and is already available for Cray and Cyber com- 
puters [2, 31. 

3. JOB CONTROL 

Even the simplest job requires many steps, such as block substitutions, vec- 
torization, compilation, load, run, print, and plot, and it is the task of the “Job 
Control Language” to access and run all the pieces. Most such languages have 
accreted rather than been designed and the most creative is surely UNIX. Even so, 
the commonest sequence of activities is to change a few lines of Fortran or Data 
and rerun the whole sequence and look at the results. All the intermediate activity 
should be buried into a single command and most users find ways to do so. This 
has been done in the “Friendly Fortran” package [2] which has a controller to do 
all of the obvious sequences with a one-line request. 

At the John von Neumann Center things were a little harder because one may sit 
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at a high-end work station, running UNIX, to talk to the VAX-8600 front-end 
system, running VMS, to submit jobs to the Control Data Cyber-205, running the 
batch system, VSOS. This is to be rationalized by replacing the Cyber-205 by and 
ETA-lo, running UNIX, and it will then not always be necessary to work on the 
VMS system. 

In the meantime, the idea of having commands to do whole sequences of com- 
mon activities was extended to allow VMS users to interact with procedures, with 
the family name of PEP, which write appropriate VSOS job controls for submission 
to the Cyber [4]. The session (slightly shortened for this paper) to update, compile, 
load, run, print, and plot from a version called TAG of the Fortran Application 
Driver shell is shown in Table I. The PEPCLGO command is interactive, uses 
much of the availabe software options on the Cyber, and finishes with instructions 
on what to do next. The cycle of “edit-submit-inspect results” thereafter requires 
only one statement, @ TAG, to drive jobs forth and back to the Cyber. This is 
about as friendly as one can make a batch supercomputer. 

This is but one example of the range of PEP commands which in fact drive all 
the available Cyber utilities in their commonest mode. Thus, the extension .UPD 
for the Fortran source told PEP that it is in Update form and has to be 
preprocessed before being given to the compiler. The compiler is run with the set of 
options recommended for most users. The Loader is instructed to invoke the 
graphics library, when channel 63 is used, and the mathematical and symbolic 
dump libraries are always invoked as standard resources. The few answers lo the 
PEPCLGO questions generated a 50-line, customized procedure to run the job, 

Even on the UNIX system one needs similar omnibus commands and a way to 
generate them easily. The family name, PEP, will be changed to represent the 

TABLE I 

Running a VAX Procedure to Write Cyber-205 JCL 

JVNCC> pepclgo tag /lib= fadlib 

Your “tag” for your files on the 205 will be TAG 

Found default Fortran Source TAG.UPD;, 

Is this the one you want?: yes 

Enter time limit in STU’s (< CR> = 60): 1000 

Enter FORTRAN unit # of texr input file c CR> when done: 5 

Found default Input file TAG.DATS;l 

Is this toe one you want?: yes 

Enter FORTRAN unit # of text input file - < CR> when dons: 

Unit # of (next) output text fprintlgraphlcs) tile < CR> when done: 6 

Unit # of (next) output text (print/graphics) file - < CR> when done: 63 

Unit # ol (next) output text (print/graphics) tile < CR> ahen done: 

PEPCLGO made a command file for submitting your job to the Cyber 205. 

1. Submit your job by entering “@TAG” 

2. Wait for tbz TAG.LOG file to show up. 

3. When it does, the following filzs should be in your directory: 

TAG.LIS Fortran compiler listing. 

T4G.MAP Load map 

TAG.OUT(n) Text outputs, n= Unit # 
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machine on which the job is to run and whose compiler and libraries and so on 
may be different. To run on the ETA one builds the appropriate command set with 
“etaclgo tag” a Unix command available on a work station or on the ETA-l@. The 
jobs are then run by typing “tag” to the ETA-10 or “submit tag” to send the job up 
from a workstation. If the job is small enough the identical Fortran may well run 
on a SUN workstation but the commands would then be “sunclgo tag” to create 
the local command shell. 

As with the FAD, the shells produced by these commands provide an excellent 
starting point for more exotic sequences and serve the user as an instant manual on 
how to write UNIX shellscripts or “make” files. 

This may be an oversimplilication of the tasks in writing a new code and running 
it on (several) machines. However, this is very often quite sufficient and almost 
always adequate as a starting point. Before developing ideas of the further poten- 
tial, let us complete the simplified tool kit with a discussion of graphics, another 
area which Keith Roberts emphasized as essential to progress in computational 
research. 

4. SIMPLIFIED SCIENCE GRAPHICS 

It is obvious that most of the output from large scientific codes should be 
graphical. At the same time, pictures without numbers convey little scientific 
knowledge and unlabelled pictures remain unintelligible to any but the author. A 
good science graphics package should provide publication-quality graphics, without 
requiring the user to learn hundreds of routines, and yet should have easy access to 
color, Greek and mathematical fonts, multiple displays, and other features of 
modern computer graphics. Unfortunately, different disciplines have very different 
needs and while many physicists are content with curves and contour maps to 
diagnose their mathematical models, chemists and engineers demand three-dimen- 
sional views of molecules and structures as a key part of their understanding. Here 
we describe simple packages which are suitable for physicists and trust that others 
may adapt the philosophy. 

The first system, GRAFL-II [.5], is widely used in the Magnetic Fusion com- 
munity and drives the Livermore libraries TVSOLIB and GRAFL,IB and also 
CERNLIB. The system is easy to use and leads naturally to codes with exclusively 
graphical output where enough scales, labels, contour heights, and text provide all 
the needed numbers. A plot command is as simple as a WRITE statement and more 
useful in many cases. The second package, which is briefly described here, is very 
similar with some enhancements. 

The first difficulty with most graphics libraries is to find out how to put several 
plots on a page-or more usefully, on a screen-without all the titles overlapping 
each other. This is obviated in our package at JVNC by allowing the user to pick a 
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layout of one to three pictures across a page and up to six rows of pictures down. A 
typical setting may be 

CALL PLAY( 121 j 

which would give one picture on the first row, two on the second, and one on the 
third. The default is 22. Each plot call then needs an argument. LAY, to select the 
picture being used. An important feature of the selection process is that any picture 
may be overplotted with lots of lines, contours, markers. and text, but when a new 
picture is chosen any attempt to return to a finished picture causes a new page to 
be started for that plot. This prevents accidental overplotting and is one of many 
safeguards built into the package. 

The rest of the plotting package is illustrated by the call to plot a curve: 

CALL PCURVE (“LINLOG”. XAXIS. GAMMA, NX, LAY 

.“Functions of XS”, “XS”, “; g < (X j S”) 

The first argument chooses the type of scalin, 0 in each direction. The use of a 
character string here and elsewhere makes the coding easy to follow. The scales are 
selected from the NX values of XAXIS and GAMMA which need not be 
monotonic. The routine checks these arguments and, if they are unplottable. gives 
error messages on the picture. The title, x axis label, and ~7 axis label MUST be 
given in the call-though 3” is acceptable. This (almost) forces users to produce 
labelled plots. The odd construct ; g < is to change fonts to Greek for a gamma and 
back to Roman for the rest of the caption. Finally, a second call to PCURVE with 
the same LAY will overplot this next curve in a different line style, a different color. 
and with a different marker. All these features cycle automatically through a menu 
which can of course be controlled with calls to PSTYLE, PCOLOR. or Pl’vIA 
The key point is that the default is to provide multicolor output which is also easily 
read in black and white. 

The package provides curves, contours, three-dimensional surfaces, markers, text, 
and vector fields and other types of plots are easily added. The example in Fig. 1 
shows a fairly elaborate plot and the one statement which generated it. The package 
is itself only a driver for the underlying library which, in this case, is ISSCO’s 
DISSPLA library. The package definition is easy to implement to drive any other 
such library and makes codes more portable as well as easier to write. 

It is important to realise that the first objective of these packages is to make it 
easy to make hundreds or thousands of plots from Fortran codes. This is quite 
different from the need to take a small amount of data and make one beautiful 
picture, a need which is met ideally with P.C. and workstation packages. Three- 
dimensional plots also require a different treatment because the viewing angle and 
distance are so important and often cannot be known beforehand. Again, modern 
workstations provide most of the needed capability to examine a single picture at 
leisure from any angle. 
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FIG. 1. A 3D surface suspended over its own contour map. This is generated by one statement: CALL 
PSLJSPEND (LLL, XAX, YAX, RMATl, NX. NY, HTS. IHTS, LAY, ‘Three-D Surface above Contour 
MAP$‘, ‘XAX = I$‘, ‘YAX = J$‘, ~lO.O*(OS(I*J/lOO) $‘). 

We have described three sets of tools to simplify the starting point for doing 
supercomputing-the FAD, the PEP procedures, and some simplified science 
graphics. For many people this may already be sufficient as they may need to run 
large, commercial, or public domain packages which do all of their modelling and 
then need quick supplementary calculations and graphics to complete the work. 
For others, these tools are the first step towards some huge enterprise and the rest 
of this paper will develop ideas to simplify that development. 

5. KNOWLEDGE SYSTEMS 

So-called expert systems [6] have so far been employed in limited applications 
and directed at people with minimal computer experience. Their development and 
application in supercomputing is essentially nil, yet this approach is immensely 
important for supercomputing. The field is new and the constructs and languages 
required have not yet matured. Natural language and even the mathematics we use 
in science is highly context dependent and so the present approaches to building 
expert systems require that a finite body of knowledge, with its own syntax and 
terminology, be coded. The systems are more like an interactive text book in a 
topic or an automated decision analyser than a human expert. They sometimes 
perform better than the expert because they do not tire and always give the same 
weight to a decision branch. 

An obvious candidate for a very useful expert system for supercomputing 
applications is in solving ordinary differential equations--ODES. The system should 
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know the characteristics of all the common solution methods and be able to 
interact with an algebra system which could estimate eigenvalues for the set of 
equations and detect stiff systems. The user’s requirements on speed and accuracy of 
the solutions strongly affect the choice of method and should be part of the expert 
system. The final output of a session with the ODE expert system would be either 
advice on the best library routines or programs to use or a suggested method to be 
programmed. In some cases a more important output would be experiential advice 
on the nonlinear properties or long-term accuracy of the methods. Much of this 
would be obtained from experts in ODES who would contribute their knowledge 
and experience to the scientists who would program the system. 

Such an expert system would have to perform on a scale comparable to a good 
text on ODES [7] and the contents of the major subroutine libraries [S, 93. 
Clearly the task is considerable, but since ODES represent the commonest form of 
modelling for scientists and engineers, it should be worthwhile. Similarly, an expert 
system for statistical analysis of experimental data would be of great value. These 
two systems could set the standards, the formats, and the expectations for future 
systems for supercomputing. 

6. SYMBOLIC MANIPULATION 

This is by now a mature field with, for example, several versions of MAC- 
SYMA [lo] and a wide distribution of REDUCE [ll]. What has not yet emerged 
is a coherent library of applications packages to use these facilities easily in many 
areas. The notation and algebraic devices used in fluid or solid mechanics, 
magnetohydrodynamics, kinetic theory of gases and plasmas, or quantum 
mechanics are sets of techniques which can be easily codified in these algebra 
systems. It is now essential that this be carried through for the Class VII supercom- 
puting applications for multidimesional problems 

A good demonstration that all this is feasible is given in the Ph.D thesis by M. C. 
Wirth [ 121. The thesis described a vector and dyadic analysis package which could 
then generate component equations expressed in any of 14 orthogonal coordinate 
systems. Sets of scalar partial differential equations could then be reformatted in 
terms of variables on a discrete multidimensional mesh and the differential 
operators turned into difference operators to generate sets of finite difference 
equations. These equations could then be expanded in Taylor series to produce the 
error terms in the difference representation and show whether the equations were 
diffusive or dispersive in their error propagation. Alternatively, the equations could 
be Fourier analysed in local fashion to evaluate the stability properties of the 
schemes. Higher-level programs could generate complete alternating-direction- 
implicit difference schemes in two or three dimensions. The thesis stopped at the 
point of turning all the component expressions into Fortran coding to soll;e the 
complete problem. Similar work by G. Cook [13] -went on to generate well- 
optimized code for Cray computers. These seminal theses serve as an existence 



52 BRENDANMCNAMARA 

proof that such packages can and have been written but they do not yet represent a 
finished system for general use. 

The design of a symbolic system for ODES is worth outlining, as the need for it is 
so universal. Ordinary differential equations include Hamiltonian mechanics, non- 
linear mechanics, eigenvalue problems, rate equations for many kinds of zero- 
dimensional modelling, and so on. Each application requires a different treatment 
of the equations and so the symbolic tools should be designed in different, context- 
dependent sets. Consider a generic set of ODES 

dX/dt = F( X, C, t ) 

where X, F, C are vectors of some lengths and where some constants are defined by 
additional relations, C = C(P), involving parameters, P. The functions, F, may also 
be defined in subsidiary equations and the boundary conditions are specified by 
X= X(C, P, t = 0). Other relations may also be specified to define intermediate 
results or functionals of the answers which are needed for the studies. The point is 
that the total problem may require a large number of relations which first have to 
be checked for internal self-consistency. 

The entry point to the symbolic system is first through the mechanism to enter all 
the relations. This system will also demand names and plain text descriptions of the 
quantities which can then be used to make the final coding intelligible and the 
graphical output readable. 

Another tool could do dimensional analysis and simplify the equations to find a 
minimal parameter set which determines the system. This tool could also change 
units or rescale results as required. 

The next important tool is a cracker which will identify dependent and indepen- 
dent variables and do the consistency checks. This tool will also assign Fortran 
names to the variables and to the arrays for storing all requested intermediate and 
final answers. 

At this point, the system has a complete, symbolic description of the equations 
and algorithms to be used. It remains to write a functioning code. 

7. AUTOMATED COMPUTER PROGRAMMING 

An automated system is only useful if it generates many more lines of code than 
are input. Utilities for translating the output of MACSYMA or REDUCE 
programs into FORTRAN have been written many times, though production of 
vectorizable code is still a topic for development. The more difficult part of the task 
is to handle the-often convoluted-logic of a set of algorithms. In the case of the 
sets of ODES discussed here, the approach would be to write complete program 
shells within the Fortran Application Driver for each problem type. These would be 
a set of “context-dependent” shells with the main loops and branches in place and 
interactive points for the user to make appropriate decisions on what functions to 
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store, or pictures to plot. Some of this was designed and implemented in a pilot 
project [ 141. 

The tools to be offered include commands to be used anywhere in the program, 
for logic controls like “while, ” “until,” and so on. There are many advantages in the 
symbolic programming approach over a compiler: The type of a variable can be 
allowed much greater scope, including operator functions. All the properties of a 
variable need not be displayed explicitly whenever it is used. A simple example 
would be a plotting command like 

plot B V P against T 

The plot command would find the physical units, the DIMENSION of the 
variables, the descriptions of the variables, and use the simplified science graphics 
to produce the needed plots, fully labelled and annotated. 

Programming constructs can be developed to reflect the need of particular 
disciplines, producing a language which knows the context of crystallography or 
biomedicine or plasma physics. The final output language of the automated 
programming may be Fortran-SX, or C, or Pascal, but many scientist would never 
see this and the main programming language of the future could become these 
families of science-based symbolic operators. 

The substantial reduction in the number of lines of programming needed for each 
problem has other consequences. The programs are much easier to modify and 
colleagues can use them and add to them much more easily. The coding effort 
needed to restructure a code in Fortran in order to try out a new algorithm is often 
a deterrent to doing so, and one ends up patching unsatisfactory algorithms. Sym- 
bolic programs would be much easier to change and libraries of techniques and 
operators much easier to build, making the choice of algorithms for nonlinear 
problems more experimental. An ultimate step in the chain is to allow the computer 
to make changes to symbolic programs and run them in response to very abstract 
questions. 

A futuristic programming environment is outlined in Fig. 2: The user enters at 
the Expert Systems level and uses the AI. codewriter to write the code or to modify 
an existing symbolic code from a library. When the results are sufficiently 
interesting to be published, a paper is written-again on the computer system-and 
can then be captured, along with the data and the codes written, in a National 
Scientific Information Base. It seems only remotely possible, at present, to supply a 
“Knowledge Extractor” which will allow the successful scientist to encode his 
knowledge also in the same fashion as the Expert System from which he started. It 
is certainly possible to insert good references to the latest products into the Expert 
Systems. The (Sixth Generation) capability to have the computer do significant self- 
programming is a source for further speculation. Let us conclude with a short list of 
more accessible possibilities which are now available or readily produced. 
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FIG. 2. Use and capture of scientific knowledge. This shows the flow of a problem from the expert 
systems advisor to the artificial intelligence codewriter to a compiled Fortran code, results, a publication, 
and storage in a National Scientific Information Base. 

8. THE CLASS VII COMPUTING ENVIRONMENT 

The price/performance ratio for both supercomputers and workstations is 
dropping rapidly, so rapidly that a qualitative change is under way in how we do 
computing and a quantitative change in the number of people who have access to 
such facilities. At one end, millions of personal computers have been sold and have 
served to train a large fraction of society in doing computing. At the other end, the 
technology of large-scale integrated circuit production is soon to allow hundreds or 
thousands of today’s supercomputers on the market at a readily affordable level. 
The changes are so great that it is hard to predict what it will mean for scientific 
computing and impossible to know how it will affect society. However, we can 
define the “Class VII supercomputing environment,” the elements of which are 
illustrated in Fig. 3 and described further below. 

It includes a Class VII supercomputer, a high-speed (l&500 megabits/set) 
network, and a workstation with 3D color graphics and a fully interactive 
operating system. The purpose of the workstation is to supply all the input, output, 
graphics, text editing, and typesetting for the user, and management of codes and 
results on the supercomputer. These workstations allow the user to run several 
processes at once, and also to view them in separate windows on the screen! The 
windows may be separately attached to different computers or merely to the 
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LOGIC CONTROL 
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CODE SHELLS 

LIBRARIES 

GRAPHICS COMMANDS 

FIG. 3. Automa:ed Programming. This illustrates some capabilities ol an artificial inteliigence 
codewriter, the contents of the basic code shell, and the coupling to a real problem. The completed code 
can interact with a user, another code, or a structured data base system for storing resu1t.s. 

workstation. The advantage is that all the events the user has initiated can be 
monitored at whatever rate they run. This makes a computing session very efficient 
for the user. (The disadvantage is that this can be exhausting for the user!) 

A Workstation WIMP htecface 

The workstations already offer many software packages which make their 
functions easy to manage. It would be nice to have the same level of functionality 
and ease of use in scientific codes and a useful tool would be a general-purpose. 
workstation WIMP. The WIMP starts as a window with a number of menu and 
icon boxes around it. The user picks on “menu 1,” which first asks to be named-a. 
fusion physicist might call it “B-Fields.” A second pick of this menu would then dis- 
play an empty set of options for the user to fill in. A simple syntax would allow the 
user to indicate input from a file, setting of a variable or array, or choice of a 
graphical image to be displayed in the window. In a short session the user would fili 
in this starter WIMP and build a front end to a complex code with Windows. 
Icons, Menus, and Prompts. A further session with the customized WIMP is now 
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able to build a complete-and more error free-data set, perhaps in Namelist for- 
mat, for running the code. For example, correctly constructing the description of a 
large molecule for a dynamical study is clearly a sufficiently difficult task that such 
tools are essential. This sort of data entry is now offered in a number of commercial 
packages for running Chemistry codes [1.5], but could be available to all. 

Generalized Data Pipes 

How should data be passed to or from a code on a supercomputer? The modern 
compilers produce a complete “symbol table” with the location of every variable in 
the code. The Symbolic or Dynamic Debugging packages use these tables to inspect 
the code at any time. A small modification of these packages should allow the user 
to set any variable, in any routine, at any time, without coding of appropriate 
READ statements. A more powerful option is to design a Parser which will accept a 
more general data description with symbolic or more natural language capability. 
This has been done many times for particular codes but should be part of the 
general supercomputing environment. 

An extension of this idea allows codes to exchange results readily. Often, one 
needs someone else’s code as input or for output of results and a lengthy interface 
design process takes place. With access through the symbol tables of each code a 
very general “data pipe” is easily established. This sort of facility would be a simple 
addition to the capabilities of the Fortran Applications Driver. 

Structured Data Files 

These techniques work well for codes which require small amounts of data and 
parameters to define a problem and then run a long time. The output is likely to be 
much more voluminous, including large arrays and a great deal of graphics. A 
defect of present systems is that the filing and storage of results is done simply, with 
access to files whose names can be as short as a single character! A more natural 
corollary to input through symbol tables is to use structured output files which 
contain an index and descriptions of the data contained. Again, this is a facility to 
be included with the FAD and to be utilized by computer-generated codes. 

Parallel Processed Graphics 

The volume of results from a supercomputer brings us back to graphics: 
Graphical output is often in hundreds or thousands of pictures and viewing them 
should be done with intelligent selection mechanisms or with much faster devices 
able to run at movie speeds. The production of graphical output never affects the 
algorithms-unless the user could see them in real time and react-and therefore is 
a prime candidate to be run in parallel on a multi processing machine. The aims 
of intelligent selection and parallel processing begin to be met through the 
simplified graphics already described and were partially achieved in an extension to 
GRAFL-II. 

The idea is to output the arguments of calls to the simplified graphics to a file for 
later processing or, on a parallel machine, to shared memory for processing into 
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graphics images in parallel. The production code or the problem module then con- 
tains no graphics library. The output file is 10-50 times smaller than the picture file, 
which contains all the fonts, tick-marks, and so on which go with a picture. This 
compact file is also much easier to store for later study. The GRAFL-II extension 
uses Namelist style output which is also readily comprehensible with a text editor 

The post or parallel processor then takes the graphics text or data and produces 
pictures. It was easy to write as the simplified graphics has only a few routines and 
is a higher-level language. The processor is also a complete production graphics 
editor: Pictures can be picked out by character strings in their titles. Previous 
results can be recalled, captions changed, and indeed any feature of any picture 
altered. In interactive mode the user can create new pictures or insert whole other 
data bases to be plotted. Another advantage is that the picture language is the same 
and the call 

CAL,L PCURVE (‘LINLOG’, XAXIS. GAMMA. NX, LAY 
.“Functions of X$‘, ‘X$‘, ‘; g < (X) $‘) 

becomes 

&PLOT 
PCURVE = 1 LL = ‘LINLOG’ X = 1.2.3. F = 2.3E - 4 2.7E - 4 6.8E - 3 
NX = 3 LAY = 2 TITTLE, = ‘Functions of X$’ XAX = ‘X$’ YAX = ‘; G < (X) $ 

&END 

to plot a curve with the indicated three points. The variable names had to be fixed 
for interaction with the processor. This suggests how a parser might replace the 
namelist syntax by a more compact and operational form including symbolic 
names. 

The post processor is a natural way to make movies. Consider a calculation of 50 
times steps with 20 different pictures at each step. The following commands should 
generate a 50-second movie of the “Magnetic Field” alone: 

&PLOT 
COMMENT =&STRIP OUT THE B-FIELD INTO A NEW FILE 
OUT = ‘BFIELD’ FIND = ‘MAGNETIC’ PLOT = ‘NO’ 
&END 
&PLOT 
COMMENT = ‘OPEN 01JT FOR INPUT’ 
INPUT = ‘BFIELD’ 
&END 
&PLOT 
COMMENT = ‘MAKE POST PROCESSOR INTERPOLATE 16 FRAMES 
BETWEEN PICTURES’ 
FILL = 16 PLOT = ‘YES’ 
&END 
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The post processor does three separate tasks or calls to STEPON: Pick out the 
pictures by name and put them in a separate file. Close that tile for output and 
reopen it for input. Read the file BFIELD two pictures at a time and interpolate 
linearly in the data to generate 16 smoothly varying pictures. This is only possible 
because the graphics were preserved as structured data, not as a processed “meta- 
file.” The namelist structure is somewhat inefficient for large volumes of data but is 
readily replaced. 

The parallel graphics processor can have similar capabilities of both intelligent 
selection and multiple output streams. In its simplest operation, a code using the 
simplified graphics need only be loaded with a different, parallel processing library 
to run parallel. This could be done for all users as they migrate from single to 
multiprocessing supercomputers. 

9. CONCLUDING REMARKS 

The results and references given here are chosen to make the case that supercom- 
puting needs to be made easier as the machines get more powerful. The next 
generation machines have outstripped our ability to utilise them fully. Keith 
Roberts would have had a lot to say about it. 

REFERENCES 

1. J. P. CHRISTIANSEN AND X. v. ROBERTS, COWIJIUI. f%yS. cO~?Wln. 7, 245 (1974). 
2. B. MCNAMARA AND P. A. WILLMAN, “FFP: Friendly Fortran Programming,” LJCRL.88387, 

Lawrence Livermore National Laboratories, 1982 (unpublished). 
3. “The Fortran Applications Driver,” John von Neumann Center, 1987 (unpublished). 
4. “User Guide to the John von Neumann Center,” 1986 (unpublished). 
5. B. MCNAMARA AND P. A. WILLMANN, “GRAFL-II: User Oriented Science Graphics,” UCRL-20367, 

Lawrence Livermoore National Laboratories. 1985 (unpublished). 
6. A. BARR AND E. A. SEIGENBAUM, The Handbook sf Arr$cial Intelligence (W. Coffman. Los Altos, 

CA, 1982). 
7. C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations (PrenticeeHall, 

Englewood Cliffs, NJ, 1971). 
8. IMSL, Houston, TX. 
9. NAG: The Numerical Algorithms Group Inc., Downers Grove, IL. 

10. MACSYMA, The Mathlab Group, Laboratory for Computer Science, MIT, Cambridge, MA, 1983. 
11. A. C. HEARN, “REDUCE Users Manual,” UCP-19, University of Utah, Salt Lake City, 1973 

(unpublished). 
12. M. C. WIRTH, “On the Automation of Computational Physics,” UCRL-52996, Lawrence Livermore 

National Laboratories, 1980. 
13. G. COOK, “Development of an MHD Code for Axisymmetric, High-Beta Plasmas with Complex 

Magnetic Fields,” UCRL-53324, Lawrence Livermore National Laboratories, 1982. 
14. T. H. EINWOHNFR AND B. MCNAIMARA, Automation of Fortran programming for solving differential 

equations by MACSYMA, in 10th Conj&ence on Numerical Simularion of Plasmas, General Aiomic, 
San Diego, CA, 1983. 

15. Polygen Corp., Waltham, MA (1987). 


